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This paper presents optimizations for verifying systems with complex 
time-invariant constraints. These constraints arise naturally from 
modeling physical systems, e.g., in establishing the relationship between 
different components in a system. To verify constraint-rich systems, we 
propose two new optimizations. The first optimization is a simple, yet 
powerful, extension of the conjunctive-partitioning algorithm. The second 
is a collection of BDD-based macro-extraction and macro-expansion 
algorithms to remove state variables. We show that these two 
optimizations are essential in verifying constraint-rich problems; in 
particular, this work has enabled the verification of fault diagnosis 
models of the Nomad robot (an Antarctic meteorite explorer) and of the 
NASA Deep Space One spacecraft. 
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Abstract 

This paper presents optimizations for verifying systems with complex time- 
invariant constraints. These constraints arise naturally from modeling physical 
systems, e.g., in establishing the relationship between different components in a 
system. To verify constraint-rich systems, we propose two new optimizations. 
The first optimization is a simple, yet powerful, extension of the conjunctive- 
partitioning algorithm. The second is a collection of BDD-based macro-extraction 
and macro-expansion algorithms to remove state variables. We show that these two 
optimizations are essential in verifying constraint-rich problems; in particular, this 
work has enabled the verification of fault diagnosis models of the Nomad robot (an 
Antarctic meteorite explorer) and of the NASA Deep Space One spacecraft. 



1    Introduction 
This paper presents techniques for using symbolic model checking to automatically 
verify a class of real-world applications that have many time-invariant constraints. 
An example of constraint-rich systems is the symbolic models developed by NASA 
for on-line fault diagnosis [16]. These models describe the operation of compo- 
nents in complex electro-mechanical systems, such as autonomous spacecraft or 
robot explorers. The models consist of interconnected components (e.g., thrusters, 
sensors, motors, computers, and valves) and describe how the mode of each com- 
ponent changes over time. Based on these models, the Livingstone diagnostic en- 
gine [16] monitors sensor values and detects, diagnoses, and tries to recover from 
inconsistencies between the observed sensor values and the predicted modes of the 
components. The relationships between the modes and sensor values are encoded 
using symbolic constraints. Constraints between state variables are also used to 
encode interconnections between components. We have developed an automatic 
translator from such fault models to SMV (Symbolic Model Verifier) [11], where 
mode transitions are encoded as transition relations and state-variable constraints 
are translated into sets of time-invariant constraints. 

To verify constraint-rich systems, we introduce two new optimizations. The 
first optimization is a simple extension of the conjunctive-partitioning algorithm. 
The other is a collection of BDD-based macro-extraction and macro-expansion 
algorithms to remove redundant state variables. We show that these two optimiza- 
tions are essential in verifying constraint-rich problems. In particular, these opti- 
mizations have enabled the verification of fault diagnosis models for the Nomad 
robot (an Antarctic meteorite explorer) [1] and the NASA Deep Space One (DS1) 
spacecraft [2]. These models can be quite large, with up to 1200 state bits. 

The rest of this paper is organized as follows. We first briefly describe symbolic 
model checking and how time-invariant constraints arise naturally from modeling 
(Section 2). We then present our new optimizations: an extension to conjunctive 
partitioning (Section 3), and BDD-based algorithms for eliminating redundant state 
variables (Section 4). We then show the results of a performance evaluation on the 
effects of each optimization (Section 5). Finally, we present a comparison to prior 
work (Section 6) and some concluding remarks (Section 7). 

2   Background 

Symbolic model checking [5, 7,11] is a fully automatic verification paradigm that 
checks temporal properties (e.g., safety, liveness, fairness, etc.) of finite state sys- 
tems by symbolic state traversal. The core enabling technology for symbolic model 
checking is the use of the Binary Decision Diagram (BDD) representation [4] for 



State sets and state transitions. BDDs represent Boolean formulas canonically as 
directed acyclic graphs such that equivalent sub-formulas are uniquely represented 
as a single subgraph. This uniqueness property makes BDDs compact and enables 
dynamic programming to be used for computing Boolean operations symbolically. 

To use BDDs in model checking, we need to map sets of states, state transitions, 
and state traversal to the Boolean domain. In this section, we briefly describe 
this mapping and motivate how time-invariant constraints arise. We finish with 
definitions of some additional terminology to be used in the rest of the paper. 

2.1   Representing State Sets and Transitions 

In the symbolic model checking of finite state systems, a state typically describes 
the values of many components (e.g., latches in digital circuits) and each compo- 
nent is represented by a state variable. Let V = {vi,..., vn} be the set of state 
variables in a system, then a state can be described by assigning values to all the 
variables in V. This valuation can in term be written as a Boolean formula that is 
true exactly for the valuation as /\"_0 (VJ == c;), where c; is the value assigned to 
the variable VJ, and the "==" represents the equality operator in a predicate (similar 
to the C programming language). A set of states can be represented as a disjunction 
of the Boolean formulas that represent the states. We denote the BDD representa- 
tion for a set of states S by S (V). 

In addition to the set of states, we also need to map the system's state transitions 
to the Boolean domain. We extend the above concept of representing a set of states 
to representing a set of ordered-pairs of states. To represent a pair of states, we 
need two sets of state variables: V the set of present-state variables for the first 
tuple and V the set of next-state variables for the second tuple. Each variable v in 
V has a corresponding next-state variable v' in V. A valuation of variables in V 
and V can be viewed as a state transition from one state to another. A transition 
relation can then be represented as a set of these valuations. We denote the BDD 
representation of a transition relation T as T(V, V). 

In modeling finite state systems, the overall state transitions are generally spec- 
ified by defining the valid transitions for each state variable. To support non- 
deterministic transitions of a state variable, the expression that defines the tran- 
sitions evaluates to a set, and the next-state value of the state variable is non- 
deterministically chosen from the elements in the set. Hereafter, we refer to an 
expression that evaluates to a set either as a set expression or as a non-deterministic 
expression depending on the context, and we use the bold font type, as in f, to rep- 
resent such expression. Let f8 be the set expression representing state transitions 
of the state variable VJ. Then the BDD representation for u,'s transition relation T; 



can be defined as 

For synchronous systems, the BDD for the overall state transition relation T is 
n 

T(V,V'):= f\Ti{V,V'). 
«=o 

Detailed descriptions on this formulation, including mapping of asynchronous sys- 
tems, can be found in [5,11]. 

Note that in the above formulation, we also need to represent non-Boolean 
expressions (such as f,'s) or non-Boolean variables as part of intermediate step. 
These non-Boolean formulas can be represented using variants of BDDs (e.g., 
MTBDD [6]) that extend the BDD concept to include non-Boolean values. These 
extensions also include algorithms for Boolean operators with non-Boolean argu- 
ments like the "==" and "€". We will refer to all these BDD-variants simply as 
BDDs. 

j' 

2.2   Time-Invariant Constraints and Their Common Usages 

In symbolic model checking, time-invariant constraints specify the conditions that 
must always hold. More formally, let Cu ..., C\ be the time-invariant constraints 
and let C := C\ A C2 A ... A C\. Then, in symbolic state traversal, we consider 
only states where C is true. We refer to C as the constrained space. 

To motivate how time-invariant constraints arise naturally in modeling complex 
systems, we describe three common usages. One common usage is to make the 
same non-deterministic choice across multiple expressions in transition relations. 
For example, in a master-slave model, the master can non-deterministically choose 
which set of idle slaves to assign the pending jobs, and the slaves' next-state values 
will depend on the choice made. To model this, let f be the non-deterministic 
expression representing how the master makes its choice. If the slaves' transition 
relations are defined using the expression f directly, then each use of f makes its 
own non-deterministic choice independent of other uses. Thus, to ensure that all the 
slaves see the same non-deterministic choice, a new state variable u is introduced to 
record the choice made, and u is then used to define the slaves' transition relations. 
This recording process is expressed as the time-invariant constraint tief. 

Another common usage is for establishing the interface between different com- 
ponents in a system. For example, suppose two components are connected with a 
pipe of a fixed capacity. Then, the input of one component is the minimum of the 
pipe's capacity and the output of the other component. This relationship is de- 
scribed as a time-invariant constraint between the input and the output of these two 
components. 



Third common usage is specific uses of generic parts. For example, a bi- 
directional fuel pipe may be used to connect two components. If we want to make 
sure the fuel flows only one way, we need to constrain the valves in the fuel pipe. 
These constraints are specified as time-invariant constraints. In general, specific 
uses of generic parts arise naturally in both the software and the hardware domain 
as we often use generic building blocks in constructing a complex system. 

In the examples above, the use of time-invariant constraints is not always nec- 
essary because some these constraints can be directly expressed as a part of the 
transition relation and the associated state variables can be removed. However, 
these constraints are used to facilitate the description of the system or to reflect the 
way complex systems are built. Without these constraints, multiple expressions 
will need to be combined into possibly a very complicated expression. Perform- 
ing this transformation manually can be labor intensive and error-prone. Thus it 
is up to the verification tool to automatically perform these transformations and 
remove unnecessary state variables. Our optimizations for constraint-rich models 
is to automatically eliminate redundant state variables (Section 4) and partition the 
remaining constraints (Section 3). 

2.3   Symbolic State Traversal 

To reason about temporal properties, the pre-image and the image of the transition 
relation are used for symbolic state traversal, and time-invariant constraints are 
used to restrict the valid state space. Based on the BDD representations of a state 
set S and the transition relation T, we can compute the pre-image and the image 
of S, while restricting the computations to the constrained space C, as follows: 

pre-image(S)(V)    :=   C(V) A 3V'.[T(V, V) A (S(V) A C(V'))]      (1) 

image(S)(V)    :=   C(V) A 3V.[T(V,V) A (S(V) A C(V))]        (2) 

One limitation of the BDD representation is that the monolithic BDD for the 
transition relation T is often too large to build. A solution to this problem is the 
conjunctive partitioning [5] of the transition relation. In conjunctive partitioning, 
the transition relation is represented as a conjunction Pi A P2 A ... A Pk with each 
conjunct p represented by a BDD. Then, the pre-image can be computed by con- 
juncting with one P, at a time, and by using early quantification to quantify out 
variables as soon as possible. The early-quantification optimization is based on the 
property that sub-formulas can be moved out of the scope of an existential quan- 
tification if they do not depend on any of the variables being quantified. Formally, 
let V/, a subset of V, be the set of variables that do not appear in any of the subse- 
quent Pj's, where 1 < i < k and i < j < k. Then the pre-image can be computed 



as 

Pi    :=   3I/1
/.[P1a/y')A(S0//)AC'0/'))] (3) 

V2    :=   3Vl[P2(V,V')APl] 

Pk    :=   3VUPk(Vy)APk^] 

pre-image(S){V)    :=   C(V)Apk 

The determination and ordering of partitions (the P,'s in above) can have sig- 
nificant performance impact. Commonly used heuristics [8,12] treat the state vari- 
ables' transition relations (T^'s) as the partitions. The ordering step then greedily 
schedules the partitions to quantify out more variables as soon as possible, while 
introducing fewer new variables. Finally, the ordered partitions are tentatively 
merged with their predecessors to reduce the number of intermediate results. Each 
merged result is kept only if the resulting graph size is less than a pre-determined 
limit. 

The conjunctive partitioning for the image computation is performed similarly 
with present-state variables in V being the quantifying variables instead of next- 
state variables in V. However, since the quantifying variables are different be- 
tween the image and the pre-image computation, the resulting conjuncts for image 
computation is typically very different from those for pre-image computation. 

2.4   Additional Terminology 

We define the support variables of a function to be the variables that the function 
depends on, and the support of a function to be the set of support variables. We 
define the HE operator (if-then-else) as follows: given arbitrary expressions / and 
g where / and g may both be set expressions, and Boolean expression p, then 

^WB(ÄÄ 
where X is the set of variables used in expressions p, f, and g. We define a care- 
space optimization as any algorithm care-opt that has following properties: given 
an arbitrary expression / where / may be a set expression, and a Boolean formula 
c, then 

care-opt(f,c):=ITE(cJ,d), 

where d is defined by the particular algorithm used. The usual interpretation of this 
is that we only care about the values of / when c is true. We will refer to c as the 



care space and -ic as the don't-care space. The goal of care-space optimizations 
is to heuristically minimize the representation for / by choosing a suitable d in 
the don't-care space. Descriptions and a study of some care-space optimizations, 
including the commonly used restrict algorithm [7], can be found in [14]. 

3   Extended Conjunctive Partitioning 

The first optimization is the application of the conjunctive-partitioning algorithm 
on the time-invariant constraints. This extension is derived based on two obser- 
vations. First, as with the transition relations, the BDD representation for time- 
invariant constraints can be too large to be represented as a monolithic graph. Thus, 
it is crucial to represent the constraints as a set of conjuncts rather than a monolithic 
graph. 

Second, in constraint-rich models, many quantifying variables (variables be- 
ing quantified) do not appear in the transition relation. There are two common 
causes for this. First, when time-invariant constraints are used to make the same 
non-deterministic choices, new variables are introduced to record these choices 
(described as the first example in Section 2.2). In the transition relation, these 
new variables are used only in their present-state form. Thus, their corresponding 
next-state variables do not appear in the transition relation, and for the pre-image 
computation, these next-state variables are parts of the quantifying variables. The 
other cause is that many state variables are used only to establish time-invariant 
constraints. Thus, both the present- and the next-state version of these variables do 
not appear in the transition relations. 

Based on this observation, we can improve the early-quantification optimiza- 
tion by pulling out the quantifying variables (VQ) that do not appear in any of 
the transition relations. Then, these quantifying variables (VQ) can be used for 
early quantification in conjunctive partitioning of the constrained space (C) where 
the time-invariant constraints hold. Formally, let Qi,Q2, ■■■,Qm be the parti- 
tions produced by the conjunctive partitioning of the constrained space C, where 
C = Qi A Q2 A ... A Qm. For the pre-image computation, Equation 3 is replaced 

by 

qi    :=   3W{.[Q1(V')AS(V')] 

q2    :=   3W'2.{Q2{V)Aq{\ 

qm    :=    3WUQm(V')Aqm-l] 

Pl    :=   3V[.[Px{Vy)Aqm\ 



where W(, a subset of V£, is the set of variables that do not appear in any of the 
subsequent Q/s, where 1 < i < m and i < j < m. Similarly, this extension also 
applies to the image computation. 

4   Elimination of Redundant State Variables 

Our second optimization for constraint-rich models is targeted at reducing the state 
space by removing unnecessary state variables. This optimization is a set of BDD- 
based algorithms that compute an equivalent expression for each variable used in 
the time-invariant constraints (macro extraction) and then globally replace a suit- 
able subset of variables with their equivalent expressions (macro expansion) to 
reduce the total number of variables. 

The use of macros is traditionally supported by language constructs (e.g., DE- 
FINE in the SMV language [11]) and by simple syntactic analyses such as detecting 
deterministic assignments (e.g., a == / where a is a state variable and / is an ex- 
pression) in the specifications. However, in constraint-rich models, the constraints 
are often specified in a more complex manner such as conditional dependencies on 
other state variables (e.g., p => (a == /) as conditional assignment of expression 
/ to variable a when p is true). To identify the set of valid macros in such models, 
we need to combine the effects of multiple constraints. One drawback of syntactic 
analysis is that, for each type of expression, syntactic analysis will need to add 
a template to pattern match these expressions. Another more severe drawback is 
that it is difficult for syntactic analysis to estimate the actual cost of instantiating a 
macro. Estimating this cost is important because reducing the number of variables 
by macro expansion can sometimes result in significant performance degradation 
caused by large increases in other BDD sizes. These two drawbacks make the 
syntactic approach unsuitable for models with complex time-invariant constraints. 

Our approach uses BDD-based algorithms to analyze time-invariant constraints 
and to derive the set of possible macros. The core algorithm is a new assignment- 
extraction algorithm that extracts assignments from arbitrary Boolean expressions 
(Section 4.1). For each variable, by extracting its assignment form, we can de- 
termine the variable's corresponding equivalent expression, and when appropri- 
ate, globally replace the variable with its equivalent expression (Section 4.2). The 
strength of this algorithm is that by using BDDs, the cost of macro expansion can be 
better characterized because the actual model checking computation is performed 
using BDDs. 

Note that there have been a number of research efforts on BDD-based redun- 
dant state-variable removal. To better compare our approach to these previous re- 
search efforts, we postpone the discussion of this prior work until Section 6, after 



describing our algorithms and the performance evaluation. 

4.1   BDD-Based Assignment Extraction 

The assignment-extraction problem can be stated as follows: given an arbitrary 
Boolean formula / and a variable v (where v can be non-Boolean), find g and h 
such that 

• / = (v e g) A h, 

• g does not depend on v, and 

• h is a Boolean formula and does not depend on v. 

The expression (v G g) represents a non-deterministic assignment to variable v. 
In the case that g always evaluates to a singleton set, the assignment (v € g) is 
deterministic. A solution to this assignment-extraction problem is as follows: 

h   =   3v.f 

t   =     (J ITE(fUk,{k},$) 
ksKv 

g   =    restrictit, h) 

where Kv is the set of all possible values of variable v, and restrict [7] is a care- 
space optimization algorithm that tries to reduce the BDD graph size (of t) by 
collapsing the don't-care space (-1/1). The BDD algorithm for the \JkeKv °Perator 

is similar to the BDD algorithm for the existential quantification with the V oper- 
ator replaced by the U operator for variable quantification. A correctness proof of 
this algorithm is included in Appendix A. 

Currently, we do not have any optimality guarantees for this solution. We do 
know that the solution g does not always have the minimum number of support 
variables, i.e., g is not necessary a minimum-support solution. However, based on 
the behavior of the restrict algorithm, we have formed a conjecture about the rela- 
tionship between g and any mimmum-support solution. Informally, this conjecture 
states that g can be converted to any minimum-support solution via a sequence of 
variable substitutions, and that these substitutions are parts of equality decomposi- 
tion of h. More formally, 

Conjecture 1 Let gm,n be a solution with the minimum number of support vari- 
ables. Then, there exists a sequence of n substitutions (ui <— e8) where Ui's are 
variables, e; 's are expressions, and 1 < i < n, such that 

• let go = & and & = &_! \Ui^ei forl<i<n, then g„ = gmin, and 



• fc=MA?=iK-==e,-)). 
If this conjecture is true, then we know that even though each right-hand-side ex- 
pression g extracted might have more support variables than necessary, these addi- 
tional variables can be eliminated later by other macros (the (ui == e,-) 's above). 

The above conjecture is based on the observation that given variable u, expres- 
sions / and e, where 

• /depends on u, 

• e does not depend on u, and 

• M'S variable order succeeds any of e's support variables' variable order, 

then, restrict(f, (u == e)) = /|u+_e. Another way of looking at this is that using 
restrict, a variable (u) might not be removed if its variable order does not come 
after the orders of its equivalent expression's (e's) support variables. To prove the 
above conjecture, we will need to first prove that equality expressions are the only 
reason that the restrict algorithm may not produce minimum support solution. 

Note that in the assignment-extraction algorithm, the use of the restrict algo- 
rithm is not necessary. In fact, any care-space optimization algorithms can be used 
instead of the restrict algorithm. We choose to use the restrict algorithm because 
of the above property and because it works well in practice for other symbolic- 
model-checking computations. 

4.2   Macro Extraction and Expansion 

In this section, we describe the elimination of state variables based on macro ex- 
traction and macro expansion. The first step is to extract macros with the algorithm 
shown in Figure 1. This algorithm extracts macros from the constrained space (C), 
which is represented as a set of conjuncts. It first uses the assignment-extraction 
algorithm to extract assignment expressions (line 5). It then identifies the determin- 
istic assignments as candidate macros (line 6). For each candidate, the algorithm 
tests to see if applying the macro may be beneficial (line 7). This test is based 
on the heuristic that if the BDD graph size of a macro is not too large and its 
instantiation does not cause excessive increase in other BDDs' graph sizes, then 
instantiating this macro may be beneficial. If the resulting right-hand-side g is not 
a singleton set, it is kept separately (line 9). These g's are combined later (line 10) 
to determine if their intersection would result in a macro (lines 11-13). Finally, this 
algorithm returns the set of selected macros (line 14). 

After the macros are extracted, the next step is to determine the instantiation 
order. The main purpose of this algorithm (in Figure 2) is to remove circular depen- 
dencies. For example, if one macro defines variable i>i to be (v2 A v3) and a second 



extract-macros(C, V) 
I* Extract macros for variables in V from 

the set C of conjuncts representing the constrained space */ 
1 M <- 0     /* initialize the set of macros found so far */ 
2 for each v eV 
3 TV ■<- 0     /* initialize the set of non-singletons found so far */ 
4 for each f € C such that / depends on v 
5 (g, h) <- assignment-extraction (/, v)     I* f = (v e g) A h */ 
6 if (g always returns a singleton set)     /* macro found */ 
7 if (is-this-result-good(g)) 
8 M <-{{v,g)}UM 
9 else N <- {g} U N 
io   g'^ng€jvg 
11 if (g' always returns a singleton set)     /* macro found */ 
12 if ((is-this-result-good(g')) 
13 M <r-{(v,g')}UM 
14 return M 

Figure 1: Macro-extraction algorithm. In lines 7 and 12, "is-this-result-good" uses 
BDD properties (such as graph sizes) to determine if the result should be kept. 

macro defines v2 to be («i V v4), then instantiating the first macro results in a cir- 
cular definition in the second macro (v2 = (f 2 A V3) V v4) and thus invalidates this 
second macro. Similarly, the reverse is also true. To determine the set of macros 
to remove, the algorithm builds a dependence graph (line 1) and breaks circular 
dependencies based on graph sizes (lines 2-4). It then determines the ordering of 
the remaining macros based on the topological order (line 4) of the dependence 
graph. 

Finally, in the topological order, each macro (v, g) is instantiated in the remain- 
ing macros and in all other expressions (represented by BDDs) in the system, by 
substituting the variable v with its equivalent expression g. 

5   Evaluation 

5.1   Experimental Setup 

The benchmark suite used is a collection of 58 SMV models gathered from a wide 
variety of sources, including the 16 models used in a BDD performance study [17]. 
Out of these 58 models, 37 models have no time-invariant constraints, and thus 
our optimizations are not triggered and have no influence on the overall verifica- 
tion time. Out of the remaining 21 models, 10 very small models (< 10 seconds) 

10 



order jnacros(M) 
/* Determine the instantiation order of the macros in set M */ 
/* first build the dependence graph G={M,E)*I 
E={(x,y)\x = {vX)gx) EM,y= {vy,gy) £ M,gy depends on vx} 
I* then remove circular dependences */ 
while there are cycles in G, 

Mc <- set of macros that are in some cycle 
remove the macro with largest BDD size in Mc 

return a topological ordering of the remaining macros in G 

Figure 2: Macro-ordering algorithm. 

are eliminated. On the remaining 11 models, our optimizations have made non- 
negligible performance impact on 7 models, where the results changed by more 
than 10 CPU seconds and 10% from the base case where no optimizations are en- 
abled. In Figure 3, we briefly describe these 7 models. Note that some of these 
models are quite large, with up to 1200 state bits. 

Model 
acs 
dsl-b 
dsl 
futurebus 
nomad 
v-gate 
xavier 

# of State Bits 
497 
657 
657 
174 

1273 
86 

100 

Description 
the altitude-control module of NASA's DS1 spacecraft 
a buggy fault diagnosis model for NASA's DS1 spacecraft 
corrected version of dsl-b 
FutureBus cache coherency protocol 
fault diagnosis model for an Antarctic meteorite explorer 
reactor-system model 
fault diagnosis model for the Xavier robot 

Figure 3: Description of models whose performance results are affected by our 
optimizations. 

The results reported in this section are labeled with the following keys to indi- 
cate which optimizations are enabled: 

None: no optimizations. 

Quan: the "early quantification on the constrained space" optimiza- 
tion (Section 3). 

SynM: syntactic analysis for macro-extraction and macro-expansion. 
This algorithm pattern matches deterministic assignment expres- 
sions (v == f, where v is a state variable and / is an expression) 
as macros and expands these macros. 

11 



BDDM: the BDD-based macro extraction and macro expansion (Sec- 
tion 4). 

Q+SynM: both Quan and SynM optimizations. 

Q+BDDM: both Quan and BDDM optimizations. 

We performed the evaluation using the Symbolic Model Verifier (SMV) model 
checker [11] from Carnegie Mellon University. Conjunctive partitioning was used 
only when it was necessary to complete the verification. In these cases (including 
acs, nomad, dsl-b, and dsl), the size limit for each partition was set to 10,000 
BDD nodes. For the remaining cases, the transition relations were represented as 
monolithic BDDs. The constrained space C was represented as a conjunction with 
each conjunct's BDD graph size limited to 10,000 nodes. Without partitioning, we 
could not construct the BDD representation for the constrained space for 4 models. 
The evaluation was performed on a 200MHz Pentium-Pro with 1 GB of memory 
running Linux. Each run was limited to 6 hours of CPU time and 900 MB of 
memory. 

In Figure 4, we show the running time of different optimizations. Note that 
for all benchmarks, the time spent by our optimizations is very small (< 5 seconds 
or < 5% of total time) and is included in the running time shown. In the rest of 
this section, we analyze these results in the following order: the overall impact 
of our optimizations (Section 5.2), the impact of early quantification on the con- 
straint space (Section 5.3), and the impact of macro optimization (Section 5.4). We 
then finish with a brief study on the impact of different size limits for conjunctive 
partitioning (Section 5.5). 

Model 
None 
(sec) 

Quan 
(sec) 

SynM 
(sec) 

BDDM 
(sec) 

Q+SynM 
(sec) 

Q+BDDM 
(sec) 

acs m.o. 32 m.o. 1059 76 7 
dsl-b m.o. 321 t.o. m.o. 138 54 
dsl m.o. m.o. m.o. to. to. 37 
futurebus 1410 53 78 37 35 19 
nomad m.o. t.o. m.o. to. 7801 633 
v-gates 36 35 51 50 53 50 
xavier 16 5 6 5 1 2 

Figure 4: Running time with different optimizations enabled. The m.o.'s and t.o.'s 
are the results that exceeded the 900-MB memory limit and the 6-hour time limit, 
respectively. 
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5.2   Overall Results 

The results in Figure 5 show the overall performance impact of our optimizations. 
These results demonstrate that our optimizations have significantly improved the 
performance for 2 models (with speedups up to 74) and have enabled the verifica- 
tion of 4 models. For the v-gates model, the performance degradation (speedup = 
0.7) is in the computation of the reachable states from the initial states. Upon fur- 
ther investigation, we believe that it is caused by the macro optimization, which in- 
creases the graph size of the transition relation from 122-thousand to 476-thousand 
nodes. This case demonstrates that reducing the number of state variables does not 
always improve performance. 

Model None (sec) Q+BDDM (sec) None / Q+BDDM (speedup) 
acs m.o. 7 enabled 
dsl-buggy m.o. 54 enabled 
dsl m.o. 367 enabled 
futurebus 1410 19 74.2 
nomad m.o. 633 enabled 
valves-gates 36 50 0.7 
xavier 16 2 8.0 

Figure 5: Overall impact of our optimizations. The m.o.'s are the results that ex- 
ceeded the 900-MB memory limit. 

5.3   Impact of Early Quantification 

The results in Figure 6 show the impact of applying early quantification on time- 
invariant constraints. The impact is measured both in the number of quantify- 
ing BDD variables extracted from the transition relations and in the performance 
speedups. The speedup results for None / Quan show that adding this optimization 
has enabled the verification of acs and dsl-b, and achieved significant performance 
improvement on futurebus (speedup of 26). The results in the Quan columns show 
that this improvement is mostly due to the fact that a large number of variables can 
be pulled out of the transition relations and applied to conjunctive partitioning and 
early quantification of the time-invariant constraints. 

From the Q+BDDM and BDDM / Q+BDDM columns, we observe similar 
results in presence of BDD-based macro optimization. Note that for the Q+BDDM 
columns, the "# of BDD vars extracted" results also include the number of BDD 
variables that are removed by the macro optimization. This is done to make the 
comparison between Quan and Q+BDDM results easier. 

13 



The results in Figure 6 show two additional interesting points. First, the num- 
ber of variables extracted forpre-image computation is more than that extracted for 
image computation. This is because some variables are only used in their present- 
state form in the transition relation (see first example in Section 2.2). Second, 
comparing the results between Quan and Q+BDDM columns indicates that the 
macro optimization generally does not interfere with the early-quantification opti- 
mization. The one exception is the nomad model, where the macro optimization 
introduced 114 BDD variables ((1121 - 1067) present-state variables plus (1174 - 
1114) next-state variables) to the overall transition relation. 

Model 

Total 
#of 

BDD 
Vars 

Effects of CP Optimization 
# of BDD vars extracted performance speedup 
Quan 

img     p-img 
Q+BDDM 

img     p-img 
None/ 
Quan 

BDDM/ 
Q+BDDM 

acs 994 439       449 437        449 enabled 151.0 
dsl-b 1314 550       566 546       566 enabled enabled 
dsl 1314 550       566 546       566 n/a enabled 
futurebus 348 58        110 54       110 26.6 1.9 
nomad 2546 1121      1174 1067      1114 n/a enabled 
v-gates 172 0         17 8          17 1.0 1.0 
xavier 200 69         86 69         86 3.2 2.5 

Figure 6: Effectiveness of the extended conjunctive-partitioning optimization. The 
effectiveness measures are (1) the number of quantifying BDD variables that are 
pulled out of the transition relation for early quantification of the time-invariant 
constraints, and (2) the impact on overall running time as performance speedups. 
For both measures, we present results both with (+BDDM) and without the BDD- 
based macro optimization. The n/a indicates that the speedup can not be computed 
because both cases failed to finish within the resource limits. Note: the number 
of BDD variables is twice the number of state variables—one copy for the present 
state and one copy for the next state. 

5.4   Impact of Macro Extraction and Macro Expansion 

The results in Figure 7 show the impact of the BDD-based macro optimization, 
This impact is measured both in the number of BDD variables removed and in 
the performance speedups. The performance results in the None / BDDM column 
show that adding this optimization has enabled the verification of acs and achieved 
significant performance improvement on futurebus (speedup of 38). The results are 
similar in presence of the early-quantification optimization (the Quan / Q+BDDM 
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column). The results for "# of BDD vars removed" show that these performance 
improvements are due to the effectiveness of BDD-based macro optimization in re- 
moving variables; in particular, over a third of variables are removed for 4 models. 

Model 

Total 
# of BDD 
Variables 

Effects of BDD-based Macro Optimization 
# Of BDD 
variables 
removed 

performance speedup 
None/ 
BDDM 

Quan/ 
Q+BDDM 

acs 994 352 enabled 4.5 
dsl-b 1314 492 n/a 5.9 
dsl 1314 496 n/a enabled 
futurebus 348 18 38.1 2.7 
nomad 2546 844 n/a enabled 
v-gates 172 16 0.7 0.7 
xavier 200 116 3.2 2.5 

Figure 7: Effectiveness of macro optimizations. The effectiveness measures are 
(1) the number of BDD variables removed by macro optimization, and (2) the 
impact on overall running time as performance speedups. For both measures, we 
present results both with and without the early-quantification optimization. The 
n/a indicates that the speedup can not be computed because both cases failed to 
finish within the resource limits. Note: the number of BDD variables is twice the 
number of state variables. 

To evaluate the effectiveness of syntactic-based vs. BDD-based macro extrac- 
tion, we compare the impact of these two approaches using both the number of 
BDD variables removed and the running time (Figure 8). The comparison is done 
for both with and without the early-quantification optimization. Note that the early- 
quantification optimization does not affect the number of BDD variables removed. 
Thus, the "# of BDD vars removed" results are the same for both with and without 
the early-quantification optimization. 

Without the early-quantification optimization (the SynM / BDDM column), 
the results show that the BDD-based approach is better with the verification of acs 
enabled. With the early-quantification optimization (the Q+SynM / Q+BDDM 
column), the results show that the BDD-based approach has enabled the verifica- 
tion of dsl and generally has better performance, with speedups of over 10 in acs 
and nomad. In the xavier case, the slowdown is 2 (speedup of 0.5) because the 
Q+BDDM used one extra second in macro extraction. The overall performance 
improvements are due to that the BDD-based approach is more effective in reduc- 
ing the number of variables ("# of BDD vars removed" columns). In particular, 
for the acs, nomad, dsl-b, and dsl models, > 150 additional BDD variables (i.e., 
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> 75 state bits) are removed in comparison to using syntactic analysis. 

Model 

Total 
#of 

BDD 
Vars 

Syntax vs. BDD-based Macro Optimization 
# of BDD vars removed performance speedup 
SynMor 
Q+SynM 

BDDM or 
Q+BDDM 

SynM/ 
BDDM 

Q+SynM/ 
Q+BDDM 

acs 994 82 352 enabled 10.8 
dsl-b 1314 148 492 n/a 2.5 
dsl 1314 220 496 n/a enabled 
futurebus 348 12 18 2.1 1.8 
nomad 2546 688 844 n/a 12.3 
v-gates 172 16 16 1.0 1.0 
xavier 200 64 116 1.2 1/2 = 0.5 

Figure 8: Syntactic-based vs. BDD-based macro optimization. The effectiveness 
measures are (1) the number of BDD variables removed, and (2) the impact on 
overall running time as performance speedups. For both measures, we present re- 
sults both with and without the early-quantification optimization. The n/a indicates 
that the speedup can not be computed because both cases failed to finish within the 
resource limits. Note: the number of BDD variables is twice the number of state 
variables. 

5.5   Impact of Conjunctive-Partitioning Size Limit 

Because the conjunctive-partitioning algorithm often produces significantly dif- 
ferent performance results with different partition-size limits, we have also re- 
evaluated the above results using a partition-size limit of 100,000 nodes. The new 
results generally follow the same trend as before with the exception of dsl-b and 
dsl. For these two models, the results (Figure 9) show that if we choose the right 
partition-size limit for each case, we do not need to perform the macro optimiza- 
tion to verify them. (Note that this is not always true; e.g., the nomad model cannot 
be verified without the macro optimization.) However, with the BDD-based macro 
optimization (the Q+BDDM column), the performance results are more stable and 
are generally much better. 

6   Related Work 

There have been many research efforts on BDD-based redundant state-variable 
removal in both logic synthesis and verification.  These research efforts all use 
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Model 

Partition 
Size Limit 

(# of nodes) 
None 
(sec) 

Quan 
(sec) 

SynM 
(sec) 

BDDM 
(sec) 

Q+SynM 
(sec) 

Q+BDDM 
(sec) 

dsl-b 
dsl-b 

10,000 
100,000 

m.o. 
to. 

321 
309 

to. 
to. 

m.o. 
m.o. 

138 
to. 

54 
101 

dsl 
dsl 

10,000 
100,000 

m.o. 
m.o. 

m.o. 
255 

m.o. 
to. 

to. 
m.o. 

to. 
92 

37 
74 

Figure 9: Effects of the partition-size limit. The m.o. 's and to. 's are the results that 
exceeded the 900-MB memory limit and the 6-hour time limit, respectively. 

the reachable state space (set of states reachable from initial states) to determine 
functional dependencies for Boolean variables (macro extraction). The reachable 
state space effectively plays the same role as a time-invariant constraint, because 
the verification process only needs to check specifications in the reachable state 
space. 

Berthet et al. propose the first redundant state-variable removal algorithm in 
[3]. In [10], Lin and Newton describe a branch-and-bound algorithm to identify 
the maximum set of redundant state variables. In [13], Sentovich et al. propose 
new algorithms for latch removal and latch replacement in logic synthesis. There 
is also some work on detecting and removing redundant state variables while the 
reachable state space is being computed [9, 15]. 

From the algorithmic point of view, our approach is different from prior work 
in two ways. First, in determining the relationship between variables, the algo- 
rithms used to extract functional dependencies in previous work can be viewed 
as direct extraction of deterministic assignments to Boolean variables. In compari- 
son, our assignment extraction algorithm is more general because it can also handle 
non-Boolean variables and extract non-deterministic assignments. Second, in per- 
forming the redundant state-variable removal, the approach used in the previous 
work would need to combine all the constraints first and then extract the macros 
directly from the combined result. However, for coristraint-rich models, it may not 
be possible to combine all the constraints because the resulting BDD is too large 
to build. Our approach addresses this issue by first applying the assignment ex- 
traction algorithm to each constraint separately and then combining the results to 
determine if a macro can be extracted (see Figure 1). 

Another difference is that in previous work, the goal is to remove as many 
variables as possible. However, we have empirically observed that in some cases, 
removing additional variables can result in significant performance degradation in 
overall verification time (slowdown over 4). To address this issue, we use simple 
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heuristics (size of the macro and the growth in graph sizes) to choose the set of 
macros to expand. This simple heuristic works well in the test cases we tried. 
However, in order to fully evaluate the impact of different heuristics, we need to 
gather a larger set of constraint-rich models from a wider range of applications. 

t 

7   Conclusions and Future Work 

The two optimizations we proposed are crucial in verifying this new class of constraint- 
rich applications. In particular, they have enabled the verification of real-world 
applications such as the Nomad robot and the NASA Deep Space One spacecraft. 

We have shown that the BDD-based assignment-extraction algorithm is effec- 
tive in identifying macros. We plan to use this algorithm to perform a more precise 
cone-of-influence analysis with the assignment expressions providing the exact de- 
pendence information between the variables. In general, we plan to study how 
BDDs can be use to further help other compile-time optimizations in symbolic 
model checking. 
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A   Correctness Proof for Assignment-Extraction Algorithm 

In this section, we present a correctness proof for the assignment-extraction algo- 
rithm in Section 4.1. Before presenting the main result, we first state and prove two 
supporting lemmas. 

Lemma 1 Let care-opt be any care-space optimization. Then, for arbitrary set 
expression t, Boolean formula h, and variable v, 

(v e care-opt(t, h)) A h = care-opt(v £ t, h) A h. 

Proof 
By the definition of the care-space optimization, we have the following prop- 
erties: 

h   =$■    (care-opt(t, h) == t), 

h   =>•    [care-opt(v G t, h) == (v £ t)]. 
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Therefore, 

(v e care-opt(t, h)) A h   =    (v £ t) A h 

=   care-opt(v e t, h) A h. 

Lemma 2 Given an arbitrary Boolean formula f and a variable v. Let 

t=   U ITE(fUk,{k}J), 
keKv 

where Kv is the set of all possible values of variable v. Then, 

(v 6 t) = /. 

Proof 

v€t   =     Y  iV == k') A (k' E t) 
k'ei<v 

=      V  (t, == k') A [Ar' e   U ITE(fUk, {k}, 0)] 
k'eKv keKv 

=      \f  (v==k')A   \f [k'eITE(fUk,{k},®)] 
k'<=Kv k£Kv 

=    \l („ == k') A V iTE(f\v^.k, k> e {k}, k' e 0) 
k'eKv keh'v 

=      \/  (v == k') A  V ITE(f\v^k, k' e {k}, 0) 
i'eü'« keh~v 

=      \/ (v == *') A ITE(f\v^k/, k' e {*'}, 0) 

=   \/ (u==Ä;')A/r£(/l^,)1)0) 

fc'eA'„ 

=      V  (U==A')A/U^ 
A;'eA'„ 

=   /• 

D 

D 

Using the two lemmas above, we can now prove the correctness of the assignment- 
extraction algorithm. 
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Theorem 1 Given an arbitrary Boolean formula f and a variable v. Let 

h   =   3v.f, 

t   =     U LTE(f\vi-k,{k},<b), 
k£Kv 

g   =   care-opt(t, h), 

where care-opt is any care-space optimization algorithm and care-opt(t, h) does 
not depend on any new variables (other than those already in t and h). Then, the 
following conditions are true. 

1. f=(veg)Ah, 

2. g does not depend on v, and 

3. h is a Boolean formula and does not depend on v. 

Proof 
To prove Condition 1, we apply both Lemma 1 and Lemma 2 in the following 
derivation: 

{v £ g) A h   = (»6 care-opt(t, h)) A h 

= care-opt{y G t, h) A h 

= care-opt(f, h) A h 

= /Aft 

= /A 3«./ 

= / 

Condition 2 is true because t does not depend on v (by construction) and the 
care-opt algorithm does not introduce new variable dependencies (given). 
Condition 3 is true because / is a Boolean formula and h = 3v.f is a 
Boolean formula that does not depend on v. 

D 
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